Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
J Org Chem ; 89(1): 798-803, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38131648

RESUMO

The unusual and sterically constrained amino acid, seco-1-azacubane-2-carboxylic acid, was incorporated into a range of bioactive chemical templates, including enalaprilat, perindoprilat, endomorphin-2 and isoniazid, and subjected to biological testing. The endomorphin-2 derivative displayed increased activity at the δ opioid receptor, but a loss in activity was observed in the other cases, although human normal cell line evaluation suggests limited cytotoxic effects.


Assuntos
Ácidos Carboxílicos , Receptores Opioides mu , Humanos , Receptores Opioides mu/química , Receptores Opioides mu/metabolismo , Aminoácidos , Linhagem Celular
2.
Curr Opin Pharmacol ; 73: 102415, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38041933

RESUMO

Translating promising preclinical pain relief data for novel molecules from drug discovery to positive clinical trial outcomes is challenging. The angiotensin II type 2 (AT2) receptor is a clinically-validated target based upon positive proof-of-concept clinical trial data in patients with post-herpetic neuralgia. This trial was conducted because AT2 receptor antagonists evoked pain relief in rodent models of neuropathic pain. EMA401 was selected as the drug candidate based upon its suitable preclinical toxicity and safety profile and good pharmacokinetics. Herein, we provide an overview of the discovery, preclinical and clinical development of EMA401, for the alleviation of peripheral neuropathic pain.


Assuntos
Neuralgia , Receptor Tipo 2 de Angiotensina , Humanos , Bloqueadores do Receptor Tipo 2 de Angiotensina II/farmacocinética , Neuralgia/tratamento farmacológico , Compostos Benzidrílicos/farmacologia
4.
Inflammopharmacology ; 31(4): 1589-1603, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37106238

RESUMO

Chronic pain is not only one of the most common health problems, it is often challenging to treat adequately. Chronic pain has a high prevalence globally, affecting approximately 20% of the adult population. Chronic inflammatory pain and neuropathic (nerve) pain conditions are areas of large unmet medical need because analgesic/adjuvant agents recommended for alleviation of these types of chronic pain often lack efficacy and/or they produce dose-limiting side effects. Recent work has implicated the NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3) inflammasome in the pathobiology of chronic pain, especially neuropathic and inflammatory pain conditions. NLRP3 is activated by damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs). This in turn leads to recruitment and activation of caspase-1 an enzyme that cleaves the inactive IL-1ß and IL-18 precursors to their respective mature pro-inflammatory cytokines (IL-1ß and IL-18) for release into the cellular milieu. Caspase-1 also cleaves the pyroptosis-inducing factor, gasdermin D, that leads to oligomerization of its N-terminal fragment to form pores in the host cell membrane. This then results in cellular swelling, lysis and release of cytoplasmic contents in an inflammatory form of cell death, termed pyroptosis. The ultimate outcome may lead to the development of neuropathic pain and/or chronic inflammatory pain. In this review, we address a role for NLRP3 inflammasome activation in the pathogenesis of various chronic pain conditions.


Assuntos
Dor Crônica , Inflamassomos , Humanos , Adulto , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Interleucina-18 , Dor Crônica/tratamento farmacológico , Caspase 1/metabolismo , Interleucina-1beta/metabolismo
5.
J Med Chem ; 66(6): 3746-3784, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36856340

RESUMO

The global "opioid crisis" has placed enormous pressure on the opioid ligand discovery community to produce novel opioid analgesics with superior opioid-related adverse-effect profiles compared with morphine. In this Perspective, the multitargeted opioid ligand strategy for the discovery of opioid analgesics with superior preclinical therapeutic indices relative to morphine is reviewed and discussed. Dual-targeted µ-opioid (MOP)/δ-opioid (DOP) ligands in which the in vitro DOP antagonist potency at least equals that of the MOP agonist activity, and are devoid of DOP or κ-opioid (KOP) agonist activity, are sufficiently promising candidates to warrant further investigation. Dual-targeted MOP/NOP partial agonists have superior preclinical therapeutic indices to morphine and/or fentanyl in nonhuman primates and are also considered promising. Based on the poor preclinical and clinical therapeutic indices of cebranopadol, which is a full agonist at MOP, DOP, and NOP receptors and a partial agonist at the KOP receptor, this pharmacologic template should be avoided.


Assuntos
Analgesia , Analgésicos Opioides , Animais , Analgésicos Opioides/efeitos adversos , Receptores Opioides mu , Receptores Opioides delta , Ligantes , Dor/tratamento farmacológico , Morfina
6.
Pharmacol Rep ; 75(3): 634-646, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36637684

RESUMO

BACKGROUND: Strong opioid analgesics such as morphine alleviate moderate to severe acute nociceptive pain (e.g. post-surgical or post-trauma pain) as well as chronic cancer pain. However, they evoke many adverse effects and so there is an unmet need for opioid analgesics with improved tolerability. Recently, a prominent hypothesis has been that opioid-related adverse effects are mediated by ß-arrestin2 recruitment at the µ-opioid (MOP) receptor and this stimulated research on discovery of G-protein biassed opioid analgesics. In other efforts, opioids with MOP agonist and δ-opioid (DOP) receptor antagonist profiles are promising for reducing side effects c.f. morphine. Herein, we report on the in vivo pharmacology of a novel opioid peptide (CYX-5) that is a G-protein biassed MOP receptor agonist, DOP receptor antagonist and kappa opioid (KOP) receptor agonist. METHODS: Male Sprague-Dawley received intracerebroventricular bolus doses of CYX-5 (3, 10, 20 nmol), morphine (100 nmol) or vehicle, and antinociception (tail flick) was assessed relative to constipation (charcoal meal and castor oil-induced diarrhoea tests) and respiratory depression (whole body plethysmography). RESULTS: CYX-5 evoked naloxone-sensitive, moderate antinociception, at the highest dose tested. Although CYX-5 did not inhibit gastrointestinal motility, it reduced stool output markedly in the castor oil-induced diarrhoea test. In contrast to morphine that evoked respiratory depression, CYX-5 increased tidal volume, thereby stimulating respiration. CONCLUSION: Despite its lack of recruitment of ß-arrestin2 at MOP, DOP and KOP receptors, CYX-5 evoked constipation, implicating a mechanism other than ß-arrestin2 recruitment at MOP, DOP and KOP receptors, mediating constipation evoked by CYX-5 and potentially other opioid ligands.


Assuntos
Constipação Intestinal , Morfina , Receptores Opioides delta , Insuficiência Respiratória , Animais , Masculino , Ratos , Analgésicos Opioides/efeitos adversos , Óleo de Rícino/efeitos adversos , Constipação Intestinal/induzido quimicamente , Constipação Intestinal/tratamento farmacológico , Diarreia/tratamento farmacológico , Proteínas de Ligação ao GTP , Morfina/efeitos adversos , Antagonistas de Entorpecentes/farmacologia , Ratos Sprague-Dawley , Receptores Opioides delta/agonistas , Receptores Opioides mu/agonistas , Insuficiência Respiratória/induzido quimicamente
8.
Bioorg Med Chem ; 69: 116889, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35779512

RESUMO

Multiple sclerosis-associated central neuropathic pain (MS-CNP) is difficult to alleviate with clinically used pain-killers and so there is a large unmet medical need for novel treatments for alleviating MS-CNP. Although (R)-alpha lipoic acid (ALA) evoked significant pain relief efficacy in a mouse model of multiple sclerosis-associated central neuropathic pain (MS-CNP), this dietary supplement has poor oral bioavailability due to low gastric stability. Eight ester prodrugs of the R enantiomer of ALA [(R)-ALA] were designed encompassing a range of biocompatible hydrophobic and hydrophilic features and synthesized in an effort to identify a prodrug candidate that was stable at gastric and upper gastrointestinal tract (GIT) pH, and that could be released (hydrolyzed by esterases) in the blood to (R)-ALA immediately after absorption into the portal vein (i.e., highly desirable features for pain relief development). These biocompatible hydrophobic and hydrophilic (R)-ALA pro-dugs underwent comprehensive preliminary screening to reveal PD-ALA4 HCl salt (10) as a promising candidate and PD-ALA 7 (8) could be a viable substitute, utilizing enzyme-free gastric and intestinal stability assessments, LogP evaluations, in vitro plasma stability and caco-2 cell monolayer permeability.


Assuntos
Esclerose Múltipla , Neuralgia , Pró-Fármacos , Ácido Tióctico , Animais , Disponibilidade Biológica , Células CACO-2 , Humanos , Camundongos , Esclerose Múltipla/complicações , Esclerose Múltipla/tratamento farmacológico , Neuralgia/tratamento farmacológico , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Ácido Tióctico/farmacologia , Ácido Tióctico/uso terapêutico
9.
J Med Chem ; 65(3): 1612-1661, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-34995453

RESUMO

Strong opioid analgesics, including morphine, are the mainstays for treating moderate to severe acute pain and alleviating chronic cancer pain. However, opioid-related adverse effects, including nausea or vomiting, sedation, respiratory depression, constipation, pruritus (itch), analgesic tolerance, and addiction and abuse liability, are problematic. In addition, the use of opioids to relieve chronic noncancer pain is controversial due to the "opioid crisis" characterized by opioid misuse or abuse and escalating unintentional death rates due to respiratory depression. Hence, considerable research internationally has been aimed at the "Holy Grail" of the opioid analgesic field, namely the discovery of novel and safer opioid analgesics with improved opioid-related adverse effects. In this Perspective, medicinal chemistry strategies are addressed, where structurally diverse nonmorphinan-based opioid ligands derived from natural sources were deployed as lead molecules. The current state of play, clinical or experimental status, and novel opioid ligand discovery approaches are elaborated in the context of retaining analgesia with improved safety and reduced adverse effects, especially addiction liability.


Assuntos
Analgésicos Opioides/uso terapêutico , Produtos Biológicos/uso terapêutico , Dor/tratamento farmacológico , Peptídeos/uso terapêutico , Analgésicos Opioides/química , Animais , Produtos Biológicos/química , Linhagem Celular Tumoral , Química Farmacêutica , Descoberta de Drogas , Humanos , Ligantes , Peptídeos/química , Receptores Opioides delta/agonistas , Receptores Opioides kappa/agonistas , Receptores Opioides mu/agonistas
10.
Drug Deliv Transl Res ; 12(10): 2518-2526, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34802093

RESUMO

Ketamine is used as an analgesic adjuvant in patients with chronic cancer-related pain. However, ketamine's short half-life requires frequent dose administration. Our aim was to develop a sustained release formulation of ketamine with high loading and to evaluate the in vivo pharmacokinetics and biodistribution in mice. Here, ketamine hydrochloride sustained-release lipid particles (KSL) were developed using the thin-film hydration method. The mean (± SD) encapsulation efficiency (EE) and drug loading (DL) of KSL were 65.6 (± 1.7)% and 72.4 (± 0.5)% respectively, and the mean (± SD) size of the lipid particles and the polydispersity index were 738 (± 137) nm and 0.44 (± 0.02) respectively. The release period of KSL in pH 7.4 medium was 100% complete within 8 h in vitro but a sustained-release profile was observed for more than 5 days after intravenous injection in mice. Importantly, the KSL formulation resulted in a 27-fold increase in terminal half-life, a threefold increase in systemic exposure (AUC0-∞), and a threefold decrease in clearance compared with the corresponding pharmacokinetics for intravenous ketamine itself. Our findings demonstrate high encapsulation efficiency of ketamine in the sustained-release KSL formulation with prolonged release in mice after systemic dose administration despite 100% in vitro release within 8 h that requires future investigation.


Assuntos
Ketamina , Animais , Preparações de Ação Retardada , Lipídeos , Lipossomos , Camundongos , Tamanho da Partícula , Distribuição Tecidual
11.
Drug Deliv Transl Res ; 12(3): 676-694, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33907987

RESUMO

Ketamine in sub-anaesthetic doses has analgesic properties and an opioid-sparing effect. Intrathecal (i.t.) delivery of analgesics bypasses systemic metabolism and delivers the analgesic agent adjacent to the target receptors in the spinal cord and so small doses are required to achieve effective pain relief. In order to relieve intractable cancer-related pain, sustained-release ketamine formulations are required in combination with a strong opioid because frequent i.t. injection is not practical. In this study, ketamine or ketamine-loaded porous silicon (pSi) were encapsulated into poly(lactic-co-glycolic acid) (PLGA) microparticles by a novel supercritical carbon dioxide (scCO2) method, thereby avoiding the use of organic solvent. Multiple parameters including theoretical drug loading (DL), presence of pSi, size of scCO2 vessel, PLGA type, and use of co-solvent were investigated with a view to obtaining high DL and a sustained-release for an extended period. The most important finding was that the use of a large scCO2 vessel (60 mL) resulted in a much higher encapsulation efficiency (EE) compared with a small vessel (12 mL). In addition, pre-loading ketamine into pSi slightly improved the level of drug incorporation (i.e. EE and DL). Although the in vitro release was mainly affected by the drug payload, the use of the large scCO2 vessel reduced the burst release and extended the release period for PLGA microparticles with 10% or 20% ketamine loading. Together, our findings provide valuable information for optimization of drug delivery systems prepared with the aid of scCO2.


Assuntos
Ketamina , Analgésicos , Analgésicos Opioides , Dióxido de Carbono , Preparações de Ação Retardada , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Porosidade , Silício , Solventes
12.
Pharmaceutics ; 13(9)2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34575581

RESUMO

Peptides hold promise as therapeutics, as they have high bioactivity and specificity, good aqueous solubility, and low toxicity. However, they typically suffer from short circulation half-lives in the body. To address this issue, here, we have developed a method for encapsulation of an innate-immune targeted hexapeptide into nanoparticles using safe non-toxic FDA-approved materials. Peptide-loaded nanoparticles were formulated using a two-stage microfluidic chip. Microfluidic-related factors (i.e., flow rate, organic solvent, theoretical drug loading, PLGA type, and concentration) that may potentially influence the nanoparticle properties were systematically investigated using dynamic light scattering and transmission electron microscopy. The pharmacokinetic (PK) profile and biodistribution of the optimised nanoparticles were assessed in mice. Peptide-loaded lipid shell-PLGA core nanoparticles with designated size (~400 nm) and a sustained in vitro release profile were further characterized in vivo. In the form of nanoparticles, the elimination half-life of the encapsulated peptide was extended significantly compared with the peptide alone and resulted in a much higher distribution into the lung. These novel nanoparticles with lipid shells have considerable potential for increasing the circulation half-life and improving the biodistribution of therapeutic peptides to improve their clinical utility, including peptides aimed at treating lung-related diseases.

13.
Clin Exp Pharmacol Physiol ; 48(11): 1515-1522, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34275162

RESUMO

For patients with osteoarthritis (OA) of the knee, pain is the most debilitating symptom. Although it has been proposed that the chronic phase of the monoiodoacetate (MIA)-induced rodent model of knee joint pain may be superior to other chronic or acute OA models for assessing the analgesic efficacy of novel molecules, relatively few pharmacological studies have been conducted in the chronic phase of this model. Hence, this study was designed to use pharmacological methods to characterize the chronic phase of the MIA-induced rat model of knee joint OA pain. Rats received a single intraarticular injection of MIA at 2.5 mg or vehicle (saline) into the left (ipsilateral) knee joint. Pain behaviour was assessed by measuring paw withdrawal thresholds (PWTs) in the hindpaws pre-MIA injection and twice-weekly until study completion on day 42. Mechanical allodynia was fully developed in the ipsilateral hindpaws (PWTs ≤6 g) from day 7 and it persisted until day 42. MIA-injected rats with PWTs ≤6 g in the ipsilateral hindpaws received single doses of one of four clinically available drugs that represent four distinct pharmacological classes, viz gabapentin, amitriptyline, meloxicam and morphine, according to a 'washout' protocol with at least 48 hours between successive doses. Gabapentin evoked dose-dependent anti-allodynia as did morphine whereas amitriptyline and meloxicam were inactive. Our findings are aligned with clinical data showing that gabapentin and morphine alleviated OA pain in the knee. The lack of efficacy of amitriptyline is consistent with the loss of descending diffuse noxious inhibitory controls reported by others in this model.


Assuntos
Dor
14.
Biomolecules ; 11(7)2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202809

RESUMO

Cisplatin, which is a chemotherapy drug listed on the World Health Organisation's List of Essential Medicines, commonly induces dose-limiting side effects including chemotherapy-induced peripheral neuropathy (CIPN) that has a major negative impact on quality of life in cancer survivors. Although adjuvant drugs including anticonvulsants and antidepressants are used for the relief of CIPN, analgesia is often unsatisfactory. Herein, we used a rat model of CIPN (cisplatin) to assess the effect of a glycine transporter 2 (GlyT2) inhibitor, relative to pregabalin, duloxetine, indomethacin and vehicle. Male Sprague-Dawley rats with cisplatin-induced mechanical allodynia and mechanical hyperalgesia in the bilateral hindpaws received oral bolus doses of the GlyT2 inhibitor (3-30 mg/kg), pregabalin (3-100 mg/kg), duloxetine (3-100 mg/kg), indomethacin (1-10 mg/kg) or vehicle. The GlyT2 inhibitor alleviated both mechanical allodynia and hyperalgesia in the bilateral hindpaws at a dose of 10 mg/kg, but not at higher or lower doses. Pregabalin and indomethacin induced dose-dependent relief of mechanical allodynia but duloxetine lacked efficacy. Pregabalin and duloxetine alleviated mechanical hyperalgesia in the bilateral hindpaws while indomethacin lacked efficacy. The mechanism underpinning pain relief induced by the GlyT2 inhibitor at 10 mg/kg is likely due to increased glycinergic inhibition in the lumbar spinal cord, although the bell-shaped dose-response curve warrants further translational considerations.


Assuntos
Cisplatino/toxicidade , Cloridrato de Duloxetina/uso terapêutico , Proteínas da Membrana Plasmática de Transporte de Glicina/antagonistas & inibidores , Indometacina/uso terapêutico , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Pregabalina/uso terapêutico , Analgésicos/uso terapêutico , Animais , Benzamidas/uso terapêutico , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Hiperalgesia/tratamento farmacológico , Masculino , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/metabolismo , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento
15.
Clin Exp Pharmacol Physiol ; 48(1): 96-106, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32888350

RESUMO

Chronic low back pain (LBP) has high prevalence in the adult population which is associated with enormous disability. Hence, our aim was to further characterise our LBP rat model by using immunohistological and immunohistochemical methods at an advanced stage (day 49) of the model. Male Sprague-Dawley rats were anaesthetised and their lumbar L4/L5 and L5/L6 intervertebral discs (IVDs) were punctured (0.5 mm outer diameter, 2 mm-deep) 10 times per disc. Sham-rats underwent similar surgery, but no discs were punctured. For LBP- but not sham-rats, noxious pressure hyperalgesia was fully developed in the lumbar axial deep tissues on day 21 post-surgery, which was maintained until at least day 49. In the lumbar (L4-L6) dorsal root ganglia (DRGs), somatostatin (SRIF) and the somatostatin receptor type 4 (SST4 receptor) were co-localised with substance P and IB4, markers of small diameter unmyelinated peptidergic and non-peptidergic C-fibres respectively as well as with NF200, a marker of medium to large diameter neurons. On day 49, there was increased expression of SRIF but not the somatostatin receptor type 4 (SST4 receptor) in the lumbar DRGs and the spinal dorsal horns. There were increased DRG expression levels of the putative pro-nociceptive mediators: phosphorylated p38 (pp38) mitogen-activated protein kinase (MAPK) and phosphorylated p44/p42 MAPK (pp44/pp42 MAPK) as well as pp38 MAPK expression levels in the lumbar spinal cord. Taken together, the increased expression of SRIF in the lumbar DRGs and spinal cord and its co-localisation with nociceptive fibres in DRG sections suggest a potential role of SRIF in modulating chronic mechanical LBP.

16.
Pharm Res ; 37(10): 211, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33009588

RESUMO

PURPOSE: For patients with intractable cancer-related pain, administration of strong opioid analgesics and adjuvant agents by the intrathecal (i.t.) route in close proximity to the target receptors/ion channels, may restore pain relief. Hence, the aim of this study was to use bioerodable polymers to encapsulate an opioid analgesic (hydromorphone) and an adjuvant drug (ketamine) to produce prolonged-release formulations for i.t. injection. METHODS: A two-stage microfluidic method was used to fabricate nanoparticles (NPs). The physical properties were characterised using dynamic light scattering and transmission electron microscopy. A pilot in vivo study was conducted in a rat model of peripheral neuropathic pain. RESULTS: The in vitro release of encapsulated payload from NPs produced with a polymer mixture (CPP-SA/PLGA 50:50) was sustained for 28 days. In a pilot in vivo study, analgesia was maintained over a three day period following i.t. injection of hydromorphone-loaded NPs at 50 µg. Co-administration of ketamine-loaded NPs at 340 µg did not increase the duration of analgesia significantly. CONCLUSIONS: The two-stage microfluidic method allowed efficient production of analgesic/adjuvant drug-loaded NPs. Our proof-of-principle in vivo study shows prolonged hydromorphone analgesic for 78 h after single i.t. injection. At the i.t. dose administered, ketamine released from NPs was insufficient to augment hydromorphone analgesia.


Assuntos
Hidromorfona/administração & dosagem , Ketamina/administração & dosagem , Microfluídica , Nanopartículas/uso terapêutico , Dor Intratável/tratamento farmacológico , Analgésicos Opioides/administração & dosagem , Animais , Composição de Medicamentos/métodos , Injeções Espinhais , Lipídeos/farmacologia , Masculino , Polímeros/uso terapêutico , Ratos , Ratos Sprague-Dawley
17.
ACS Infect Dis ; 6(11): 2901-2912, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-32986949

RESUMO

Acetohydroxyacid synthase (AHAS, EC 2.2.1.6), the first enzyme in the branched chain amino acid biosynthesis pathway, is the target for more than 50 commercially available herbicides, and is a promising target for antimicrobial drug discovery. Herein, we have expressed and purified AHAS from Candida auris, a newly identified human invasive fungal pathogen. Thirteen AHAS inhibiting herbicides have Ki values of <2 µM for this enzyme, with the most potent having Ki values of <32 nM. Six of these compounds exhibited MIC50 values of <1 µM against C. auris (CBS10913 strain) grown in culture, with bensulfuron methyl (BSM) being fungicidal and the most potent (MIC50 of 0.090 µM) in defined minimal media. The MIC50 value increases to 0.90 µM in media enriched by the addition of branched-chain amino acids at the expected concentration in the blood serum. The sessile MIC50 for BSM is 0.6 µM. Thus, it is also an excellent inhibitor of the growth of C. auris biofilms. BSM is nontoxic in HEK-293 cells at concentrations >100 µM and thus possesses a therapeutic index of >100. These data suggest that targeting AHAS is a viable strategy for treating C. auris infections.


Assuntos
Acetolactato Sintase , Herbicidas , Preparações Farmacêuticas , Acetolactato Sintase/genética , Candida , Células HEK293 , Humanos
18.
Pharmacol Rep ; 72(5): 1418-1425, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32715433

RESUMO

BACKGROUND: The pathobiology of prostate cancer-induced bone pain (PCIBP) is underpinned by both inflammatory and neuropathic components. Here, we used a rat model of PCIBP to assess the analgesic efficacy of a glycine transporter 2 (GlyT2) inhibitor (N-(6-((1,3-dihydroxypropan-2-yl)amino)-2-(dimethylamino)pyridin-3-yl)-3,5-dimethoxy-4-(4-(trifluoromethyl)phenoxy) benzamide) relative to two clinically available adjuvant drugs that are recommended for the relief of neuropathic pain, viz, pregabalin and duloxetine. METHODS: PCIBP was induced in male Wistar Han rats following intra-tibial injection (ITI) of rat prostate cancer (AT3B) cells into the left tibia. Sham-rats received an ITI of heat-killed AT3B cells. PCIBP rats with fully developed mechanical allodynia in the ipsilateral hindpaws as assessed using von Frey filaments, received single oral (p.o.) bolus doses of the GlyT2 inhibitor (3-30 mg/kg), pregabalin (3-100 mg/kg), duloxetine (3-100 mg/kg), or vehicle. Baseline paw withdrawal thresholds (PWTs) were determined in the ipsilateral (injured side) and contralateral hindpaws immediately prior to dosing and at scheduled times for 3 h post dosing in individual animals. RESULTS: Single oral bolus doses of the GlyT2 inhibitor (3-30 mg/kg) evoked partial pain relief at the doses tested in the ipsilateral hindpaws of PCIBP rats without any discernible behavioural side effects. By contrast, single oral bolus doses of pregabalin at 10-100 mg/kg evoked dose-dependent and complete alleviation of mechanical allodynia. By comparison, single oral bolus doses of duloxetine at doses up to 100 mg/kg lacked efficacy. CONCLUSION: Oral administration of this GlyT2 inhibitor evoked partial pain relief in PCIBP rats and did not evoke central nervous system side effects in contrast to GlyT2 inhibitors reported by others.


Assuntos
Dor do Câncer/tratamento farmacológico , Cloridrato de Duloxetina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Glicina/antagonistas & inibidores , Hiperalgesia/tratamento farmacológico , Neuralgia/tratamento farmacológico , Pregabalina/farmacologia , Neoplasias da Próstata/fisiopatologia , Analgésicos/farmacologia , Animais , Osso e Ossos/efeitos dos fármacos , Dor do Câncer/etiologia , Modelos Animais de Doenças , Hiperalgesia/metabolismo , Masculino , Neuralgia/etiologia , Medição da Dor/métodos , Limiar da Dor/efeitos dos fármacos , Neoplasias da Próstata/complicações , Neoplasias da Próstata/metabolismo , Ratos , Ratos Wistar
19.
Clin Exp Pharmacol Physiol ; 47(12): 1912-1922, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32686129

RESUMO

Chronic mechanical low back pain (cLBP) is a leading cause of disability and a major socio-economic burden internationally. The lifetime prevalence of non-specific LBP is approximately 84%, with the prevalence of cLBP at about 23%. Clinically available analgesic/adjuvant medications often provide inadequate pain relief in patients experiencing cLBP. Hence, the urgency for discovery of effective and better tolerated medications. Fourteen days after the induction of five shallow annular punctures (5X) in the lumbar intervertebral discs at L4/L5 and L5/L6 in male Sprague-Dawley rats, mechanical hyperalgesia was fully developed in the lumbar axial deep tissues at L4/L5 (primary) and L1 (secondary). Importantly, mechanical allodynia in the hindpaws was absent. From day 28, we assessed the face validity of our mild to moderate LBP-5X rat model using four clinically available analgesic/adjuvant drugs, namely gabapentin, morphine, meloxicam and amitriptyline relative to vehicle. Additionally, the anti-hyperalgesic effects of J-2156, a highly selective small molecule somatostatin type 4 receptor agonist was assessed. Single i.p. bolus doses of gabapentin and meloxicam at the highest doses tested (100 and 30 mg/kg, respectively) alleviated secondary hyperalgesia (L1) but not primary hyperalgesia (L4/5). Morphine at 1 mg/kg alleviated both primary and secondary hyperalgesia in these tissues, whereas amitriptyline at the doses tested, lacked efficacy. These findings attest to the face validity of our model. J-2156 at 10 and 30 mg/kg alleviated secondary hyperalgesia in the lumbar axial deep tissues at L1 with a non-significant trend for relief of primary hyperalgesia in the corresponding tissues at L4/L5 in these animals.


Assuntos
Hiperalgesia , Dor Lombar , Analgésicos/farmacologia , Animais , Modelos Animais de Doenças , Masculino , Ratos , Ratos Sprague-Dawley
20.
Clin Exp Pharmacol Physiol ; 47(10): 1740-1750, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32542833

RESUMO

In Alzheimer's disease (AD) glial fibrillary acidic protein (GFAP) is expressed by reactive astrocytes surrounding ß-amyloid (Aß) plaques, whereas brain-derived neurotrophic factor (BDNF) levels are typically reduced. We compared the expression of GFAP, BDNF, and its precursor proBDNF in the dorsal hippocampus of two transgenic AD mouse models. APPSwe YAC mice expressing the APPSwe transgene on a yeast artificial chromosome (YAC) were assessed at age 4 and 21 months, and APPSwe/PS1dE9 mice co-expressing mutant amyloid precursor protein (APPSwe) and presenilin-1 (PS1dE9) were assessed at age 4 and 9 months. Significantly increased (1.4-fold) GFAP expression was observed in APPSwe YAC c.f. wild-type (Wt) mice aged 21 months, when Aß deposition was first evident in these mice. In APPSwe/PS1dE9 mice aged 4 and 9 months, GFAP expression was significantly increased (1.6- and 3.1-fold, respectively) c.f. Wt mice, and was associated with robust Aß deposition at 9 months. BDNF expression was significantly lower in 4- and 21-month old APPSwe YAC mice (0.8- and 0.6-fold, respectively) c.f. age-matched Wt mice, whereas proBDNF expression was significantly higher (10-fold) in the APPSwe YAC c.f. Wt mice aged 21 months. In APPSwe/PS1dE9 mice aged 4 months, BDNF expression was significantly lower (0.4-fold) c.f. age-matched Wt mice and was equivalent to that in 9-month old mice of both genotypes; proBDNF expression mirrored that of BDNF in this strain. These findings support a role for reactive astrocytes and neuroinflammation, rather than BDNF, in the spatial memory deficits previously reported for APPSwe YAC and APPSwe/PS1dE9 mice.


Assuntos
Doença de Alzheimer/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Encéfalo/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Humanos , Aprendizagem em Labirinto , Camundongos , Camundongos Transgênicos , Memória Espacial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...